首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   11篇
  国内免费   2篇
测绘学   3篇
大气科学   8篇
地球物理   44篇
地质学   49篇
海洋学   41篇
天文学   8篇
综合类   1篇
自然地理   15篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   12篇
  2010年   6篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1984年   2篇
  1983年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有169条查询结果,搜索用时 250 毫秒
61.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   
62.
The western Barents Sea and the Svalbard archipelago share a common history of Caledonian basement formation and subsequent sedimentary deposition. Rock formations from the period are accessible to field study on Svalbard, but studies of the near offshore areas rely on seismic data and shallowdrilling. Offshore mapping is reliable down to the Permian sequence, but multichannel reflection seismic data do not give a coherent picture of older stratigraphy. A survey of 10 Ocean Bottom Seismometer profiles was collected around Svalbard in 1998. Results show a highly variable thickness of pre-Permian sedimentary strata, and a heterogeneous crystalline crust tied to candidates for continental sutures or major thrust zones. The data shown in this paper establish that the observed gravity in some parts of the platform can be directly related to velocity variations in the crystalline crust, but not necessarily to basement or Moho depth. The results from three new models are incorporated with a previously published profile, to produce depth-to-basement and -Moho maps south of Svalbard. There is a 14 km deep basement located approximately below the gently structured Upper Paleozoic Sørkapp Basin, bordered by a 7 km deep basement high to the west, and 7–9 km depths to the north. Continental Moho-depth range from 28 to 35 km, the thickest crust is found near the island of Hopen, and in a NNW trending narrow crustal root located between 19°E and 20°E, the latter is interpreted as a relic of westward dipping Caledonian continental collision or major thrusting. There is also a basement high on this trend. Across this zone, there is an eastward increase in the VP, VP/VS ratio, and density, indicating a change towards a more mafic average crustal composition. The northward basement/Moho trend projects onto the Billefjorden Fault Zone (BFZ) on Spitsbergen. The eastern side of the BFZ correlates closely with coincident linear positive gravity and magnetic anomalies on western Ny Friesland, apparently originating from an antiform with high-grade metamorphic Caledonian terrane. A double linear magnetic anomaly appears on the BFZ trend south of Spitsbergen, sub-parallel to and located 10–50 km west of the crustal root. Based on this correlation, it is proposed that the suture or major thrust zone seen south of Svalbard correlates to the BFZ. The preservation of the relationship between the crustal suture, the crustal root, and upper mantle reflectivity, challenges the large-offset, post-collision sinistral transcurrent movement on the BFZ and other trends proposed in the literature. In particular, neither the wide-angle seismic data, nor conventional deep seismic reflection data south of Svalbard show clear signs of major lateral offsets, as seen in similar data around the British Isles.  相似文献   
63.
Bivalves are often the dominant macrobenthos species in exposed sandy beach environments. However, our understanding of their recruitment processes before post-settlement stages on sandy beaches with highly energetic environments is incomplete. To clarify the characteristics of the free-swimming planktonic stage that affects recruitment efficiency in sandy shore ecosystems, we investigated the temporal (weekly–biweekly) variation of bivalve planktonic larval concentration coupled with oceanographic conditions on an exposed sandy shore on the sea of Kashima-nada, Japan, from summer 2003 to autumn 2005. Larvae were observed throughout the year, but the surge of larval concentration composed of sandy beach and sessile bivalves occurred most prominently in summer, from August to September. The peak concentration of larvae during this season was more than 1000 times higher than in other seasons. The larval concentration was positively correlated with water temperature and northward wind velocity and negatively correlated with each of the nutrient concentrations. On the other hand, chlorophyll a concentration and salinity seemed to have little effect on the larval concentration. Based on this fundamental knowledge, further investigations about planktonic larvae in sandy beaches are needed.  相似文献   
64.
Abstract Self-potential variations were measured to estimate the magnitude of electrokinetic and hydrological parameters (zeta potential and permeability) of the Nojima Fault zone in Awaji, Japan. The study observed self-potential variations that seemed to be associated with water flow from the injection well to the fracture zone, which were induced by turning the injection on and off. Amplitudes of the variations were a few to 0.03 V across 320–450 m dipoles. These variations can be explained well with an electrokinetic model. The quantity k/ζ (permeability/zeta potential) is in the range 1.6 × 10−13− 5.4 × 10−13 m2/V. Permeability of the Nojima fault zone can be estimated as approximately 10−16–10−15 m2 on the assumption that the zeta potential is in the range –0.01 to –0.001 V.  相似文献   
65.
Microtemperature measurements of groundwater with a relative precision better than 1/1000°C have been made in several seismically active areas in Japan. The measured temperatures show clear coseismic signals as well as a correlation with atmospheric pressure. Simultaneous observations at various depths have shown that these temperature changes were not induced by simple groundwater level changes. Also, distinctive signals occurred before several earthquakes and seem to be caused by a different mechanism than the coseismic signals. The microtemperature at some observation sites shows excellent correlation with records of nearby sensitive borehole strainmeters. Simultaneous recording of microtemperature and strain has been initiated in some boreholes.  相似文献   
66.
Using a recently developed ion microprobe technique, a detailed oxygen isotope map of calcite grains in a coarse-grained marble has been constructed, supported by trace element (Mn, Sr, Fe) analysis and cathodoluminescence (CL) imaging, in order to constrain scales of oxygen isotope equilibrium, timescales and mechanisms of metamorphic fluid infiltration, and fluid sources and pathways. Results are compared with a previous study of this sample (Wada 1988) carried out using a cryo-microtome technique and conventional oxygen isotope analysis. The marble, from the high temperature/low pressure Hida metamorphic belt in north-central Japan, underwent granulite facies followed by amphibolite facies metamorphic events, the latter associated with regional granite intrusion. The CL imaging indicates two types of calcite, a yellow luminescing (YLC) and a purple luminescing (PLC) variety. The YLC, which occupies grain boundaries, fractures, replacement patches, and most of the abundant deformation twin lamellae, post-dates the dominant PLC calcite and maps out fluid pathways. Systematic relationships were established between oxygen isotope and trace element composition, calcite type and texture, based on 74 18O/16O and 17 trace element analyses with 20–30 μ m spatial resolution. The YLC is enriched in Mn and Fe, and depleted in 18O and Sr compared to PLC, and is much more 18O depleted than is indicated from conventional analyses. Results are interpreted to indicate infiltration of 18O-depleted (metamorphic or magmatic) fluid (initial δ18O = 9‰–10.5‰) along grain boundaries, fractures and deformation twin lamellae, depleting calcite grains in Sr and enriching them in Mn and Fe. The sample is characterised by gross isotopic and elemental disequilibrium, with important implications for the application of chromatographic theory to constrain fluid fluxes in metacarbonate rocks. Areas of PLC unaffected by “short-circuiting” fluid pathways contain oxygen diffusion profiles of ∼10‰/∼200 μm in grain boundary regions or adjacent to fractures/patches. When correction is made for estimated grain boundary/fracture and profile orientation in 3D, profiles are indistinguishable within error. Modelling of these profiles gives consistent estimates of Dt (where D is the diffusion coefficient and t is time) of ∼0.8 × 10−8 m2, from which, using experimental data for oxygen diffusion in calcite, timescales of fluid transport along grain boundaries at amphibolite facies temperatures of ∼103 to ∼104 years are obtained. These short timescales, which are much shorter than plausible durations of metamorphism, imply that rock permeabilities may be transiently much higher during fluid flow than those calculated from time integrated fluid fluxes or predicted from laboratory measurements. The preservation of 18O/16O profiles requires either rapid cooling rates (∼100–600 °C/million years), or, more plausibly, loss of grain boundary fluid such that a dry cooling history followed the transient passage of fluid. The δ18O/trace element correlations are also consistent with volume diffusion-controlled transport in the PLC. Fluid transport and element exchange occurred by two inter-related mechanisms on short timescales and on different lengthscales – long-distance flow along cracks, grain boundaries and twin lamellae coupled to ∼200 μm-scale volume diffusion of oxygen. Received: 8 December 1997 / Accepted: 18 May 1998  相似文献   
67.
68.
This paper examines a new method for evaluating the stability of rock blocks on slopes using a remotely positioned Laser Doppler Vibrometer (LDV). A series of experiments using physical models were conducted to evaluate the validity of this new method. Based on the experimental studies, the applicability of LDV was examined by comparing results with a conventional seismometer measurement. To examine the quantitative correlations between vibration properties and the stability of a rock block, the effects on the vibration properties of the size of the rock block, the initial block position, the slope incline, and the type of ground surface were studied. The experimental results showed that LDV measurements agreed with conventional seismometer measurements. There was also a good correlation between vibration properties and rock-block stability. On the other hand, it was found that for a boulder on tightly compacted ground, the application of block stability assessment by tonometry was difficult when measuring microtremors or sloppy vibration due to nearby vehicle traffic. Furthermore, numerical analysis of the slope model was carried out to examine the validity of the model experiment and application of the suggested technique. The results of the analysis demonstrated that the suggested technique was effective for application to stability monitoring of a block and evaluation of the effect of stability measures.  相似文献   
69.
In the western United States, more than 79 000 km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land–atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) – RSM, RegCM3, MM5-CLM3, and DRCM – to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (− 1.4 to − 3.1 °C) and maximum (− 2.9 to − 6.1 °C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest.  相似文献   
70.
Plutonic rocks in the southern Abukuma Mountains include gabbro and diorite, fine‐grained diorite, hornblende–biotite granodiorite (Ishikawa, Samegawa, main part of Miyamoto and Tabito, Kamikimita and Irishiken Plutons), biotite granodiorite (the main part of Hanawa Pluton and the Torisone Pluton), medium‐ to coarse‐grained biotite granodiorite and leucogranite, based on the lithologies and geological relations. Zircon U–Pb ages of gabbroic rocks are 112.4 ±1.0 Ma (hornblende gabbro, Miyamoto Pluton), 109.0 ±1.1 Ma (hornblende gabbro, the Hanawa Pluton), 102.7 ±0.8 Ma (gabbronorite, Tabito Pluton) and 101.0 ±0.6 Ma (fine‐grained diorite). As for the hornblende–biotite granodiorite, zircon U–Pb ages are 104.2 ±0.7 Ma (Ishikawa Pluton), 112.6 ±1.0 Ma (Tabito Pluton), 105.2 ±0.8 Ma (Kamikimita Pluton) and 105.3±0.8 Ma (Irishiken Pluton). Also for the medium‐ to fine‐grained biotite granodiorite, zircon U–Pb ages are 106.5±0.9 Ma (Miyamoto Pluton), 105.1 ±1.0 Ma (Hanawa Pluton) and the medium‐ to coarse‐grained biotite granodiorite has zircon U–Pb age of 104.5 ±0.8 Ma. In the case of the leucogranite, U–Pb age of zircon is 100.6 ±0.9 Ma. These data indicate that the intrusion ages of gabbroic rocks and surrounding granitic rocks ranges from 113 to 101 Ma. Furthermore, K–Ar ages of biotite and or hornblende in the same rock samples were dated. Accordingly, it is clear that these rocks cooled down rapidly to 300 °C (Ar blocking temperature of biotite for K–Ar system) after their intrusion. These chronological data suggest that the Abukuma plutonic rocks in the southern Abukuma Mountains region uplifted rapidly around 107 to 100 Ma after their intrusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号